Mangan Database Bundesministerium für Bildung und Forschung

2022

  • S. Bhandari, P. V. Narangoda, S. O. Mogensen, M. F. Tesch, A. K. Mechler, Effect of Experimental Parameters on the Electrocatalytic Performance in Rotating Disc Electrode Measurements: Case Study of Oxygen Evolution on Ni−Co-Oxide in Alkaline Media, ChemElectroChem 2022, 9, e202200479, DOI: 10.1002/celc.202200479
     
  • S. Becker, M. Behrens, Oxygen evolving reactions catalyzed by different manganese oxides: the role of oxidation state and specific surface area, Zeitschrift für Naturforschung B, vol. 77, no. 4-5, 2022, pp. 273-285, DOI: 10.1515/znb-2022-0009
     
  • V. Seidl, A. H. Romero, F. W. Heinemann, A. Scheurer, C. S. Vogel, T. Unruh, P. Wasserscheid, K. Meyer, A New Class of Task-Specific Imidazolium Salts and Ionic Liquids and Their Corresponding Transition-Metal Complexes for Immobilization on Electrochemically Active Surfaces, Chem. Eur. J. 2022, 28, e202200100, DOI: 10.1002/chem.202200100
     
  • W. Mao, D. Fehn, F. W. Heinemann, A. Scheurer, M. van Gastel, S. A. V. Jannuzzi, S. DeBeer, D. Munz, K. Meyer, Umpolung in a Pair of Cobalt(III) Terminal Imido/Imidyl Complexes, Angew. Chem. Int. Ed. 2022, 61, e202206848, DOI: 10.1002/anie.202206848

2021

  • S. Hosseinmardi, A. Scheurer, F. W. Heinemann, K. Kuepper, L. Senft, P. Waldschmidt, I. Ivanović-Burmazović, K. Meyer, Evaluation of Manganese Cubanoid Clusters for Water-Oxidation Catalysis: From Well-Defined Molecular Coordination Complexes to Catalytically Active Amorphous Films, ChemSusChem 2021, 14, 4741, DOI: 10.1002/cssc.202101451
     
  • W. Mao, D. Fehn, F. W. Heinemann, A. Scheurer, D. Munz, K. Meyer, A Pair of Cobalt(III/IV) Terminal Imido Complexes, Angew. Chem. Int. Ed. 2021, 60, 16480-16486, DOI: 10.1002/anie.202103170
     
  • M. Mörtel, J. Oschwald, A. Scheurer, T. Drewello, M. M. Khusniyarov, Molecular Valence Tautomeric Metal Complexes for Chemosensing, Inorg. Chem. 2021, 60, 14230-14237, DOI:  10.1021/acs.inorgchem.1c01731
     
  • S. Aghazada, D. Munz, F. W. Heinemann, A. Scheurer, K. Meyer, A Crystalline Iron Terminal Methylidene, J. Am. Chem. Soc.  2021, 143, 17219–17225, DOI: 10.1021/jacs.1c08202
     
  • J. Liu, R.-Z. Liao, F. W. Heinemann, K. Meyer, R. P. Thummel, Y. Zhang, L. Tong, Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand, Inorg. Chem. 2021, 60, 23, 17976–17985, DOI: 10.1021/acs.inorgchem.1c02539
     
  • E. Ronge, J. Ohms, V. Roddatis, T. Jones, F. Sulzmann, A. Knop-Gericke, R. Schlögl, P. Kurz, C. Jooss, K. Skorupska, Operation of calcium-birnessite water-oxidation anodes: interactions of the catalyst with phosphate buffer anions, Sustainable Energy Fuels 2021, 5, 5535-5547, DOI: 10.1039/D1SE01076J
     
  • P. Plate, C. Höhn, U. Bloeck, P. Bogdanoff, S. Fiechter, F. F. Abdi, R. van de Krol, A. C. Bronneberg, On the Origin of the OER Activity of Ultrathin Manganese Oxide Films, ACS Appl. Mater. Interfaces 2021, 13, 2428−2436, DOI: 10.1021/acsami.0c15977
     
  • H. Radinger, P. Connor, R. Stark, W. Jaegermann, and B. Kaiser, Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by X-Ray Photoelectron and Operando Raman Spectroscopy, ChemCatChem 2021, 1175, DOI: 10.1002/cctc.202001756
     
  • J. Schuch, S. Klemenz, P. Schuldt, A.-M. Zieschang, S. Dolique, P. Connor, B. Kaiser, U. I. Kramm, B. Albert, and W. Jaegermann, Efficient Oxygen Evolution Electrocatalyst by Incorporation of Nickel into Nanoscale Dicobalt Boride, ChemCatChem 2021, 13, 1772, DOI: 10.1002/cctc.202002030
     
  • H. Radinger, P. Connor, S. Tengeler, R. W. Stark, W. Jaegermann, B. Kaiser, The importance of nickel oxide lattice defects for the efficient oxygen evolution reaction, Chem. Mater. 2021, 33, 21, 8259–8266, DOI: 10.1021/acs.chemmater.1c02406

2020

  • M. Mörtel, T. Lindner, A. Scheurer, F. W. Heinemann, M. M. Khusniyarov, Phenanthroline-Based Molecular Switches for Prospective Chemical Grafting: A Synthetic Strategy and Its Application to Spin-Crossover Complexes, Inorg. Chem. 2020, 59, 2659−2666, DOI:  10.1021/acs.inorgchem.9b01424
     
  • D. M. Morales, M. A. Kazakova, S. Dieckhöfer, A. G. Selyutin, G. V. Golubtsov, W. Schuhmann, J. Masa, Trimetallic Mn-Fe-Ni Oxide Nanoparticles Supported on Multi-Walled Carbon Nanotubes as High-Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media, Adv. Funct. Mater. 2020, 30, 1905992, DOI: 10.1002/adfm.201905992
     
  • K. Sliozberg, Y. Aniskevich, U. Kayran, J. Masa, W. Schuhmann, CoFe–OH Double Hydroxide Films Electro-deposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction, Z. Phys. Chem. 2020; 234(5): 995–1019, DOI: 10.1515/zpch-2019-1466
     
  • D. M. Morales, M. A. Kazakova, M. Purcel, J.s Masa, W. Schuhmann, The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions, J Solid State Electrochem 2020, 24:2901–2906, DOI: 10.1007/s10008-020-04667-2
     
  • J. Heese-Gärtlein, D. M. Morales, A. Rabe, T. Bredow, W. Schuhmann, M. Behrens, Factors Governing the Activity of a-MnO2 Catalysts in the Oxygen Evolution Reaction : Conductivity versus Exposed Surface Area of Cryptomelane, Chem. Eur. J. 2020, 26, 12256 – 12267, DOI: 10.1002/chem.201905090 
     
  • P. Connor, J. Schuch, B. Kaiser, and W. Jaegermann, The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst, Z. Phys. Chem. 2020, 234, 979, DOI: 10.1515/zpch-2019-1514
     
  • P. Connor, Manganoxide als Katalysatoren für die alkalische Sauerstoffentwicklungsreaktion, Dissertation, TU Darmstadt (2020), URN: urn:nbn:de:tuda-tuprints-119142

 

2019

  • M. Kazakova, D.M. Morales, C. Andronescu, K. Elumeeva, A. Selyutin, A.V. Ishchenko, G. Golubtsov, S. Dieckhöfer, W. Schuhmann, J. Masa. Fe/Co/Ni mixed oxide nanoparticles supported on oxidized multi-walled carbon nanotubes as electrocatalysts for the oxygen reduction and the oxygen evolution reactions in alkaline media. Catal. Today. (2019), In press. DOI: 10.1016/j.cattod.2019.02.047
     
  • H. Antoni, D. M. Morales, J. Bitzer, Q. Fu, Y.-T. Chen, J. Masa, W. Kleist, W. Schuhmann, M. Muhler, Enhancing the water splitting performance of cryptomelane-type α-(K)MnO2, J. Catal. 374 (2019), 335-344. DOI: 10.1016/j.jcat.2019.05.010
     
  • S. Barwe, C. Andronescu, R. Engels, F. Conzuelo, S. Seisel, P. Wilde, Y.-T. Chen, J. Masa, W. Schuhmann, Cobalt metalloid and polybenzoxazine derived composites for bifunctional oxygen electrocatalysis. Electrochim. Acta 297 (2019), 1042. DOI: 10.1016/j.electacta.2018.12.047
     
  • M. Chrysina, J. C. de Mendonça Silva, G. Zahariou, D. A. Pantazis, and N. Ioannidis, Proton Translocation via Tautomerization of Asn298 During the S2–S3 State Transition in the Oxygen-Evolving Complex of Photosystem II, J. Phys. Chem. B 123 (2019), 3068-3078. DOI: 10.1021/acs.jpcb.9b02317
     
  • M. Rabe, C. Toparli, Y.-H. Chen, O. Kasian, K. J. J. Mayrhofer, A. Erbe, Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods – metal dissolution, oxide formation and oxygen evolution, Phys. Chem. Chem. Phys. 21 (2019), 10457. DOI: 10.1039/c9cp00911f
     
  • P. Plate, Model-system studies on manganese oxide-based water oxidation catalysts made with atomic layer deposition, Doctoral Thesis, Technische Universität Berlin (2019). DOI: 10.14279/depositonce-8532
     
  • Nina Lämmermann, Fabian Schmid-Michels, Aike Weißmann, Lutz Wobbe, Andreas Hütten, Olaf Kruse, Extremely robust photocurrent generation of titanium dioxide photoanodes bio-sensitized with recombinant microalgal light-harvesting proteins, Scientific Reports 9 (2019), 2109, DOI: 10.1038/s41598-019-39344-6
     
  • Stefan S. Rohner, Niklas W. Kinzel, Christophe Werlé, Walter Leitner, Systematic ligand variation to modulate the electrochemical properties of iron and manganese complexes Dalton Trans., 2019, 48, 13205, DOI: 10.1039/C9DT01343A
     
  • José A. Gámez, Markus Hölscher, Walter Leitner, On the Applicability of Density Functional Theory to Manganese-Based Complexes with Catalytic Activity toward Water Oxidation, Journal of Computational Chemistry (2017), 38, 1747–1751, DOI: 10.1002/jcc.24819
     
  • M. F. Tesch, S. A. Bonke, T. E. Jones, M. N. Shaker, J. Xiao, K. Skorupska, R. Mom, J. Melder, P. Kurz, A. Knop-Gericke, R. Schlögl, R. K. Hocking, and A. N. Simonov, Evolution of Oxygen–Metal Electron Transfer and Metal Electronic States During Manganese Oxide Catalyzed Water Oxidation Revealed with In Situ Soft X‐Ray Spectroscopy, Angew. Chem. Int. Ed. 2019, 58, 3426, DOI: 10.1002/anie.201810825
     
  • C. Broicher, F. Zeng, J. Artz, H. Hartmann, A. Besmehn, S. Palkovits, R. Palkovits, Facile Synthesis of Mesoporous Nickel Cobalt Oxide for OER – Insight into Intrinsic Electrocatalytic Activity, ChemCatChem 2019, 11, 412, DOI: 10.1002/cctc.201801316
  • M. Keilwerth, J. Hohenberger, F. W. Heinemann, J. Sutter, A. Scheurer, H. Fang, E. Bill, F. Neese, S. Ye, K. Meyer, A Series of Iron Nitrosyl Complexes {Fe−NO}6−9 and a Fleeting {Fe−NO}10 Intermediate en Route to a Metalacyclic Iron Nitrosoalkane, J. Am. Chem. Soc. 2019, 141, 17217−17235, DOI: 10.1021/jacs.9b08053

  • M. W. Rosenzweig, J. Hümmer, A. Scheurer, C. A. Lamsfus, F. W. Heinemann, L. Maron, M. Mazzanti, K. Meyer, A complete series of uranium(IV) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te, Dalton Trans. 2019, 48, 10853–10864, DOI: 10.1039/C9DT00530G
     

2018

  • T. Löffler, H. Meyer, A. Savan, P. Wilde, A.G. Manjón, Y.-T. Chen, E. Ventosa, C. Scheu, A. Ludwig, W. Schuhmann. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8 (2018), 1802269. DOI: 10.1002/aenm.201802269
     
  • K. Jayaramulu, J. Masa, D.M. Morales, O. Tomanec, V. Ranc, M. Petr., P. Wilde, Y.-T. Chen, R. Zboril, W. Schuhmann, R.A. Fischer. Ultrathin 2D cobalt zeolite-imidazole framework nanosheets for electrocatalytic oxygen evolution. Adv. Sci. 5 (2018), 1801029. DOI: 10.1002/advs.201801029
     
  • C. Andronescu, S. Seisel, P. Wilde, S. Barwe, J. Masa, Y.-T. Chen, E. Ventosa, W. Schuhmann. Influence of temperature and electrolyte concentration on the structure and catalytic oxygen evolution activity of nickel–iron layered double hydroxide. Chem. Eur. J. 24 (2018), 13773-13777. DOI: 10.1002/chem.201803165
     
  • J. Weidner, S. Barwe, K. Sliozberg, S. Piontek, J. Masa, U.-P. Apfel, W. Schuhmann. Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein J. Org. Chem. 14 (2018), 1436-1445. DOI: 10.3762/bjoc.14.121
     
  • H. Simchi, K. A. Cooley, J. Ohms, L. Huang, Ph. Kurz, S. E. Mohney, Cosputtered Calcium Manganese Oxide Electrodes for Water Oxidation, Inorg. Chem. 57 (2018), 785. DOI: 10.1021/acs.inorgchem.7b02717
     
  • A. K. Beine, C. Broicher, Q. Hu, L. Mayerl, T. Bisswanger, H. Hartmann, A. Besmehn, S. Palkovits, A.‑H. Lub, and R. Palkovits, Carbon nanotube containing polyacrylonitrile materials for the oxygen evolution reaction, Catal. Sci. Technol. 2018, 8, 6311, DOI: 10.1039/c8cy01999a
     
  • H. Antoni, D. M. Morales, Q. Fu, Y.-T. Chen, J. Masa, W. Schuhmann, and M. Muhler, Oxidative Deposition of Manganese Oxide Nanosheets on Nitrogen-Functionalized Carbon Nanotubes Applied in the Alkaline Oxygen Evolution Reaction, ACS Omega 2018, 3 (9), 11216, DOI: 10.1021/acsomega.8b01433
     
  • C. Walter, P. W. Menezes, S. Loos, H. Dau, M. Driess, Facile Formation of Nanostructured Manganese Oxide Films as High‐Performance Catalysts for the Oxygen Evolution Reaction, ChemSusChem 2018, 11, 2554, DOI: 10.1002/cssc.201800493
     
  • C. Panda, P. W. Menezes, and M. Driess, Nano‐Sized Inorganic Energy‐Materials by the Low‐Temperature Molecular Precursor Approach, Angew. Chem. Int. Ed. 2018, 57, 11130, DOI: 10.1002/anie.201803673
     
  • C. Broicher, J. Artz, S. Palkovits, H. Antoni, M. Drögeler, D. M. Morales, C. Stampfer, and R. Palkovits, Mesoporous manganese phthalocyanine-based materials for electrochemical water oxidation via tailored templating, Catal. Sci. Technol. 2018, 8, 1517, DOI: 10.1039/c7cy02484c
     
  • J. Artz, Covalent Triazine‐based Frameworks—Tailor‐made Catalysts and Catalyst Supports for Molecular and Nanoparticulate Species, ChemCatChem 2018, 10, 1753, DOI: 10.1002/cctc.201701820
     
  • F. Zeng, C. Broicher, S. Palkovits, K. Simeonova, and R. Palkovits, Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production, Catal. Sci. Technol. 2018, 8, 367, DOI: 10.1039/c7cy02001e
     
  • C. Gütz, V. Grimaudo, M. Holtkamp, M. Hartmer, J. Werra, L. Frensemeier, A. Kehl, U. Karst, P. Broekmann, and S. R. Waldvogel, Leaded Bronze: An Innovative Lead Substitute for Cathodic Electrosynthesis, ChemElectroChem 2018, 5, 247, DOI: 10.1002/celc.201701061
     
  • O. Kasian, S. Geiger, M. Schalenbach, A. M. Mingers, A. Savan, A. Ludwig, S. Cherevko, and K. J. J. Mayrhofer, Using Instability of a Non-stoichiometric Mixed OxideOxygen Evolution Catalyst As a Tool to ImproveIts Electrocatalytic Performance, Electrocatalysis 2018, 9, 139, DOI: 10.1007/s12678-017-0394-6
     
  • A. Grünwald, N. Orth, A. Scheurer, F. W. Heinemann, A. Pöthig, D. Munz, An Isolable Terminal Imido Complex of Palladium and Catalytic Implications, Angew. Chem. Int. Ed. 2018, 57, 16228–16232, DOI: 10.1002/anie.201809152
  • L. Tong, W. Wu, K. Kuepper, A. Scheurer, K. Meyer, Electrochemically Deposited Nickel Oxide from Molecular Complexes for Efficient Water Oxidation Catalysis, ChemSusChem 2018, 11, 2752–2757, DOI: 10.1002/cssc.201800971

 

2017

  • S. Barwe, C. Andronescu, J. Masa, W. Schuhmann. The two Janus faces in oxygen evolution electrocatalysis: Activity versus stability of layered double hydroxides. Curr. Opin. Electrochem. 4 (2017), 4-10. DOI: 10.1016/j.coelec.2017.05.006
     
  • D.M. Morales, J. Masa, C. Andronescu, W. Schuhmann. Promotional effect of Fe impurities in graphene precursors on the activity of MnOX/graphene catalysts for oxygen evolution and oxygen reduction reactions. ChemElectroChem. 4 (2017), 2835-2841. DOI: 10.1002/celc.201700496
     
  • K. Elumeeva, J. Masa, D. Medina, E. Ventosa, S. Seisel, Y.U. Kayran, A. Genç, T. Bobrowski, P. Weide, J. Arbiol, M. Muhler. W. Schuhmann. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. J. Mater. Chem. A. 5 (2017), 5, 21129. DOI: 10.1002/celc.201700496
     
  • C. Andronescu, S. Barwe, E. Ventosa, J. Masa, E. Vasile, B. Konkena, S. W. Schuhmann. Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem. Int. Ed. 56 (2017), 11258-11262. DOI: 10.1002/anie.201705385
     
  • S. Barwe, J. Masa, C. Andronescu, B. Mei, W. Schuhmann, E. Ventosa. Overcoming the instability of nanoparticle-based catalyst films in alkaline electrolyzers by using self-assembling and self-healing films. Angew. Chem. Int. Ed. 56 (2017), 8573 –8577. DOI: 10.1002/anie.201703963
     
  • S. Barwe, C. Andronescu, J. Masa, E. Ventosa, S. Klink, A. Genç, J. Arbiol, W. Schuhmann. Polybenzoxazine-derived N-doped carbon as matrix for powder-based electrocatalysts. ChemSusChem. 10 (2017), 2653-2659. DOI: 10.1002/cssc.201700593
     
  • S. Barwe, C. Andronescu, E. Vasile, J. Masa, W. Schuhmann. Influence of Ni to Co ratio in mixed Co and Ni phosphides on their electrocatalytic oxygen evolution activity. Electrochem. Commun. 79 (2017), 41–45. DOI: 10.1016/j.elecom.2017.04.014
     
  • S. Paul, N. Cox, and D. A. Pantazis, What Can We Learn from a Biomimetic Model of Nature’s Oxygen-Evolving Complex?, Inorg. Chem. 56, (2017), 3875-3888. DOI: 10.1021/acs.inorgchem.6b02777
     
  • S. Paul, F. Neese, and D. A. Pantazis, Structural models of the biological oxygen-evolving complex: achievements, insights, and challenges for biomimicry, Green Chem. 19 (2017), 2309-2325. DOI: 10.1039/c7gc00425g
     
  • C. E. Frey, F. Kwok, D. Gonzáles-Flores, J. Ohms, K. A. Cooley, H. Dau, I. Zaharieva, T. N. Walter, H. Simchi, S. E. Mohney, Ph. Kurz, Evaporated manganese films as a starting point for the preparation of thin-layer MnOx water-oxidation anodes, Sustainable Energy Fuels 1 (2017), 1162. DOI: 10.1039/C7SE00172J
     
  • J. Melder, W. L. Kwong, D. Shevela, J. Messinger, and P. Kurz, Electrocatalytic Water Oxidation by MnOx/C: In Situ Catalyst Formation, Carbon Substrate Variations, and Direct O2/CO2 Monitoring by Membrane‐Inlet Mass Spectrometry, ChemSusChem 2017, 10, 4491, DOI: 10.1002/cssc.201701383
     
  • S. Geiger, O. Kasian, A. M. Mingers, K. J. J. Mayrhofer, and S. Cherevko, Stability limits of tin-based electrocatalyst supports, Scientific Reports 2017, 7, 4595, DOI: 10.1038/s41598-017-04079-9
     
  • H. Antoni, W. Xia, J. Masa, W. Schuhmann, and M. Muhler, Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction, Phys. Chem. Chem. Phys. 2017, 19, 18434, DOI: 10.1039/c7cp02717f
     
  • M. Kölbach, S. Fiechter, R. van de Krol, P. Bogdanoff, Evaluation of electrodeposited α-Mn2O3 as a catalyst for the oxygen evolution reaction, Catalysis Today 2017, 290, 2, DOI: 10.1016/j.cattod.2017.03.030
     
  • C. Gütz, A. Stenglein, and S. R. Waldvogel, Highly Modular Flow Cell for Electroorganic Synthesis, Organic Process Research & Development 2017, 21 (5), 771, DOI: 10.1021/acs.oprd.7b00123
     
  • I. Spanos, A. A. Auer, S. Neugebauer, X. Deng, H. Tüysüz, and R. Schlögl, Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) Setup, ACS Catalysis 2017, 7 (6), 3768, DOI: 10.1021/acscatal.7b00632
     
  • V. Grimaudo, P. Moreno-García, A. Riedo, S. Meyer, M. Tulej, M. B. Neuland, M. Mohos, C. Gütz, S. R. Waldvogel, P. Wurz, and P. Broekmann, Toward Three-Dimensional Chemical Imaging of Ternary Cu–Sn–Pb Alloys Using Femtosecond Laser Ablation/Ionization Mass Spectrometry, Analytical Chemistry 2017, 89 (3), 1632, DOI: 10.1021/acs.analchem.6b03738
     
  • J. Korzekwa, A. Scheurer, F. W. Heinemann, K. Meyer, Synthesis and characterization of uranium(IV) tetrachloro complexes in bis-pyrazolylpyridine ligand environments, Dalton Trans. 2017, 46, 13811–13823, DOI: 10.1039/C7DT02947K
     
  • J. Korzekwa, A. Scheurer, F. W. Heinemann, W. Kroener, K. Gieb, P. Müller, K. Meyer, Post-synthetic modification of divalent nickel acetate cubanes with carboxylates, J. Coord. Chem. 2017, 70, 626–641, DOI: 10.1080/00958972.2016.1274400

 

2016

  • C. Gütz, B. Klöckner, and S. R. Waldvogel, Electrochemical Screening for Electroorganic SynthesisOrganic Process Research & Development (2016), 20 (1), 26, DOI: 10.1021/acs.oprd.5b00377
     
  • D.M. Morales, J. Masa, C. Andronescu, Y.U. Kayran, Z. Sun, W. Schuhmann, Few-layer graphene modified with nitrogen-rich metallo-macrocyclic complexes as precursor for bifunctional oxygen electrocatalysts. Electrochim. Acta. 222 (2016), 1191-1199. DOI: 10.1016/j.electacta.2016.11.092
     
  • J. Masa, S. Barwe, C. Andronescu, I. Sinev, A. Ruff, K. Jayaramulu, K. Elumeeva, B. Konkena, B. Roldan-Cuenya, W. Schuhmann. Low overpotential water splitting using cobalt–cobalt phosphide nanoparticles supported on nickel foam. ACS Energy Lett. 1 (2016), 1192–1198. DOI: 10.1021/acsenergylett.6b00532
     
  • B. Konkena, J. Masa, W. Xia, M. Muhler, W. Schuhmann. MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy. 29 (2016), 46–53. DOI: 10.1016/j.nanoen.2016.04.018
     
  • V. Eßmann, S. Barwe, J. Masa, W. Schuhmann. Bipolar electrochemistry for concurrently evaluating the stability of anode and cathode electrocatalysts and the overall cell performance during long-term water electrolysis. Anal. Chem. 88 (2016), 8835-8840. DOI 10.1021/acs.analchem.6b02393
     
  • V. Krewald, M. Retegan, F. Neese, W. Lubitz, D. A. Pantazis, and N. Cox, Spin State as a Marker for the Structural Evolution of Nature’s Water-Splitting Catalyst, Inorg. Chem. 55 (2016), 488-501. DOI: 10.1021/acs.inorgchem.5b02578
     
  • V. Krewald and D. A. Pantazis, Understanding and tuning the properties of redox-accumulating manganese helicates, Dalton Trans. (2016), 45, 18900-18908. DOI: 10.1039/c6dt02800d
     
  • G. Elmaci, C. E. Frey, Ph. Kurz, B. Zümreoğlu-Karan, Water oxidation catalysis by using nano-manganese ferrite supported 1D-(tunnelled), 2D-(layered) and 3D-(spinel) manganese oxides, J. Mater. Chem. A 4 (2016), 8812. DOI: 10.1039/c6ta00593d